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For face recognition from video streams speed and accuracy are vital aspects. The first
decision whether a preprocessed image region represents a human face or not is often
made by a feed-forward neural network (NN), e.g., in the Viisage-FaceFINDERr video
surveillance system. We describe the optimization of such a NN by a hybrid algorithm
combining evolutionary multi-objective optimization (EMO) and gradient-based learn-
ing. The evolved solutions perform considerably faster than an expert-designed archi-
tecture without loss of accuracy. We compare an EMO and a single objective approach,
both with online search strategy adaptation. It turns out that EMO is preferable to the
single objective approach in several respects.
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1. Introduction

Face detection is usually the first step in face recognition for biometric authentica-

tion. The Viisage-FaceFINDERr video surveillance system1 automatically identifies

people by their faces in a three step process: first, regions of the video stream that

contain a face are detected, then specific face models are calculated, and finally

these models are compared with a database. The final face modeling and recogni-

tion is done using Hierarchical Graph Matching (HGM ),2 which is an improvement

of the Elastic Graph Matching method.3 It is inspired by human vision and highly

competitive to other techniques for face recognition.4 To meet real-time constraints,

the Viisage-FaceFINDERr requires very fast and accurate image classifiers within

the detection unit for an optimal support of HGM. In the detection step, different

biologically motivated cues are fused to cluster the given images into regions of

high and low significance similar to an approach for dynamic scene analysis in road
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traffic.5 The clusters of high significance are then classified as either containing or

not containing an upright frontal face by a task specific feed-forward neural network

(NN).6

We address the task of optimizing the weights and the structure of the face

detection NN in the Viisage-FaceFINDERr system. The first goal is to increase the

speed of the neural classifier, because faster classification allows for a higher scan-

ning rate leading to more accurate recognition. In addition, we would like to enhance

the classification accuracy of the NN. This optimization problem can be tackled by

evolutionary computation, which has become an established method for the design

of NNs. We have already shown that NNs for face detection adapted by an hybrid

algorithm combining recent developments from evolutionary and gradient-based op-

timization can outperform standard expert topologies proposed in the literature.7

In our previous work, we simplified the optimization problem by transforming the

two objectives, speed and NN classification accuracy, to a single one by weighted ag-

gregation. In this approach, we had to fix the trade-off between speed and accuracy

in advance by choosing the weighting factors of the objectives.

Increasing the speed and improving the accuracy of the classifier are two differ-

ent, not necessary overlapping aims. Hence, we assume that our NN design problem

is a—non-trivial—multi-objective optimization task. Advanced evolutionary multi-

objective optimization (EMO) considers vector-valued objective functions, where

each component corresponds to one objective. Such methods are capable of finding

sets of trade-off solutions that give an overview of the space of possible solutions.8,9

From such a set one can select an appropriate compromise, which might not have

been found by a single-objective approach. Recently, EMO has been applied to the

design of NNs.10,11 In the following, we combine the basic idea of the vector-valued

selection scheme from NSGA-II 12 with our hybrid algorithm for adapting NNs for

face detection. The performance of the new approach is compared to our previous

results. It turns out that the advanced multi-objective optimization is preferable to

the approach using linear aggregation in several respects.

The article is organized as follows. In section 2 we briefly describe the optimiza-

tion problem and the hybrid optimization algorithm with single- and multi-objective

selection, respectively. This includes the description of techniques for online opera-

tor adaptation in both cases. In section 3 we will highlight the issue of performance

assessment in the multi-objective framework. Afterwards, the empirical setup for

the comparison of our algorithms is summarized. In section 4 we report on the ex-

perimental results. Finally, in section 5 we discuss the results and draw conclusions.

2. Structure Optimization of Neural Networks for Face Detection

In this section, we first briefly describe the optimization problem of improving the

NN for face detection. Then we present our evolutionary optimization algorithm

with single- and multi-objective selection, respectively.
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name pattern faces usage
Dtrain 3000 1500 NN training and

fitness evaluation

Dval 1400 700 cross-validation
of learning and
fitness evaluation

Dtest 2000 1000 final NN choice
Dextern 2200 1100 external evaluation

Fig. 1. Left, the input to the face detection NN are preprocessed 20 × 20 pixel grayscale images
showing either frontal, upright face (positive) and nonface (negative) examples. The preprocessing
comprises rescaling, lighting correction, and histogram equalization. Right, for optimization and
evaluation we have partitioned the available patterns into 4 disjoint data sets.

2.1. Optimization Problem

Feed-forward NNs have proven to be powerful tools in pattern recognition.13

Especially in the domain of face detection the competitiveness of NNs is widely

accepted. As stated in a recent survey “The advantage of using neural networks for

face detection is the feasibility of training a system to capture the complex class

conditional density of face patterns. However, one drawback is that the NN archi-

tecture has to be extensively tuned (number of layers, number of nodes, learning

rates, etc.) to get exceptional performance”.14 This drawback is addressed by the

hybrid optimization algorithm used in this study.

In the Viisage-FaceFINDERr system the inputs to the face detection NN are

preprocessed 20 × 20 pixel grayscale images. These show either frontal, upright

faces or nonfaces, see Fig. 1 (left). The preprocessing comprises rescaling, lighting

correction, and histogram equalization. The assumption of fixed-size subimages

as input to the classifier meets the realistic application scenario for the NN in

the Viisage-FaceFINDERr system, although in the survey on face detection by

Hjelmas and Low such input patterns are regarded as unrealistic for real world

face detection.15 In Viisage-FaceFINDERr the NN is only a part of a sophisticated

face detection module, and its main task is to support the time consuming HGM

procedure with appropriate face images.

In the efficient and hardware-friendly implementation of the face detection NN

within Viisage-FaceFINDERr the speed of the classification scales approximately

linearly with the number of hidden neurons and not with the number of connec-

tions. With every hidden neuron that is saved the detection costs are reduced by

approximately one percentage point. Hence, the primary goal of the optimization is

to reduce the number of hidden nodes of the detection NN under the constraint that

the classification error should not increase. The second objective is to even improve

the classification accuracy. These are possibly conflicting objectives. In particular

“the smaller the network the better the generalization” does generally not hold.16,17

The data available for optimizing the face detection NN are split into a training

Dtrain, validation Dval, and test Dtest data set, see Fig. 1 (right). The reason for
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Fig. 2. Left, the hybrid evolutionary algorithm in conjunction with two different selection variants
(A) and (B), see text. Right, scheme of the delete-node operator. The linewidths indicate the
magnitude of the corresponding weight values. The picture also visualizes the NN input dimension
and the receptive field connectivity.

this partitioning will become apparent when we discuss our optimization algorithm

below. In addition, there is a data set Dextern, which is not used during optimization,

for the final evaluation of face detectors.

2.2. Evolutionary algorithm

Evolutionary algorithms have become established methods for the design of neural

networks, especially for adapting their topology.18,19 They are less prone to getting

stuck in local optima compared to greedy algorithms like pruning or constructive

methods.20,21

The basic optimization loop of our hybrid evolutionary algorithm is shown in

Fig.2 (left). This scheme might be regarded as canonical evolutionary NN optimiza-

tion using direct encoding, nested learning, and Lamarckian inheritance. However,

there are some special features described in the following.

We start with an explanation of how the first parent population is initialized.

Then we sketch how offspring are created and mutated. After that, we outline the

nested gradient learning procedure within the evolutionary loop. Then we highlight

the two different approaches to selection considered in this work. The section ends

with the description of the online strategy adaptation method for adjusting the

operator probabilities.

2.2.1. Initialization

The comparison of our results will be held on the basis of the expert-designed

400-52-1 NN architecture, the reference topology, proposed by Rowley et al.22 This

NN has been tailored to the face detection task and has become a standard ref-

erence for NN based face detection.14 We initialize the parent population with 25
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individuals all representing the reference topology with different random weight ini-

tializations as done in the work of Wiegand et al.7 The 400 inputs correspond to

the pixels of the preprocessed image patterns, cf. Fig. 2 (right) and Fig. 1 (left). No

hidden neuron is fully connected to the input but to certain receptive fields, see

below. The total number of connections amounts to 2905. This is in contrast to

more than 21,000 in a fully connected NN with an equal number of hidden neurons.

2.2.2. Inheritance and variation

Each parent creates one child per generation by reproduction. The offspring is then

mutated by elemental variation operators. These are chosen randomly for each

offspring from a set Ω of operators and are applied sequentially. The process of

choosing and applying an operator is repeated 1+x times, where x is an individual

realization of a Poisson distributed random number with mean 1.

All operators are implemented such that their application always leads to valid

NN graphs. A NN graph is considered to be valid if each hidden node lies on a path

from an input unit to an output unit and there are no cycles. Further, the layer

restriction, here set to a single hidden layer, has to be met. All new weight values

are drawn uniformly from the interval [−0.05, 0.05]. There are 5 basic operators:

add-connection , delete-connection, add-node , delete-node, and jog-weights:

add-connection A connection is added to the NN graph.

delete-connection This operator is inspired by magnitude based pruning. The operator

is rank-based as discussed by Braun.23 The connections of the NN are sorted

by the absolute value of the corresponding weights. The connection with

rank number r given by

r := bW · (ηmax −
√

(η2
max − 4 · (ηmax − 1) · u))/(2 · (ηmax − 1))c (1)

is deleted, so that connections with smaller weight have a higher probability

of being removed. Here bxc denotes the largest integer smaller than x, W

the number of weights, and u ∼ U [0, 1] is a random variable uniformly

distributed on [0, 1]. The parameter 1 < ηmax ≤ 2 controls the influence of

the rank and is set to its maximum value.24

add-node A hidden node with bias parameter is added to the NN and connected to

the output. For each input, a connection to the new node is added with

probability pin = 1/16.

delete-node In this rank-based node deletion operator, the hidden nodes are ordered

according to their maximum output weight. The maximum output weight

of a node i is given by maxj |wji|, where wji is the weight of the connection

from node i to node j. The nodes are selected based on (1), such that nodes

with smaller maximum output weight values have a higher probability of

deletion. If node k is deleted, all connections to or from k are removed, cf.

Fig. 2 (right).
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jog-weights This operator adds Gaussian noise to the weights in order to push the

weight configuration out of local minima and thereby to allow the gradient-

based learning to explore new regions of the weight space. Each weight

value is varied with constant probability pjog = 0.3 by adding normally

distributed noise with expectation 0 and standard deviation σjog = 0.01.

In addition to the 5 basic operators, there are 3 task-specific mutations inspired

by the concept of “receptive fields”, i.e., dimensions of the input space that corre-

spond to rectangular regions of the input image, cf. Fig.2 (right). The RF-operators

add-RF-connection , delete-RF-connection, and add-RF-node behave as their basic coun-

terparts, but act on groups of connections. They consider the topology of the image

plane by taking into account that “isolated” processing of pixels is rarely useful for

object detection. The RF-operators are defined as follows:

add-connection-RF A valid, not yet existing connection, say from neuron i to j, is

selected uniformly at random. If the source i is not an input, the connection

is directly added. Otherwise, a rectangular region of the 20×20 image plane

containing between 2 and M = 100 pixels including the one corresponding

to input i is randomly chosen. Then neuron j is connected to all the inputs

corresponding to the chosen image region.

delete-connection-RF An existing connection that can be removed, say from node i

to j, is selected at random. If the source i is not an input, the connection

is directly deleted. Otherwise, a decision is made whether a horizontal or

vertical receptive field is deleted. Assume that a horizontal field is removed.

Then delete-connection-RFx(i, j) is applied recursively to remove the inputs

from a connected pixel row:

delete-connection-RFx(i, j) Let (ix, iy) be the image coordinates of the pixel

corresponding to the input i. The connection from i to j is deleted.

If hidden node j is also connected to the input node k correspond-

ing to pixel (ix + 1, iy), delete-connection-RFx(k, j) is applied. If j is

connected to node l corresponding to (ix − 1, iy), then the operator

delete-connection-RFx(l, j) is called.

Deletion of a vertical receptive field (i.e., a connected pixel column) is done

analogously.

add-node-RF A hidden node with bias connection is added and connected to the

output and a receptive field as done in the add-connection-RF operator.

2.2.3. Embedded learning

Let MSEa(D) and CEa(D) be the mean squared error and the classification error in

percent on data set D of the NN represented by individual a and let nhidden(a) and

nweights(a) be the corresponding number of hidden neurons and weights, respec-

tively. The weights of every newly generated offspring a are adapted by gradient-
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based optimization (“learning”,“training”) of MSEa(Dtrain). An improved version

of the Rprop25,26 algorithm is used for at most 100 iterations of training. This

learning method solves the problem of choosing the learning rate by automatically

adjusting individual step-sizes for each parameter to adapt. Training can stop ear-

lier due to the generalization loss criterion GLα as described by Prechelt.27 The

generalization loss is computed on Dval for α = 5. Finally, the weight configura-

tion with the smallest MSEa(Dtrain) + MSEa(Dval) encountered during training is

regarded as the outcome of the training process and stored in the genome of the

individual a.

2.2.4. Evaluations and selection in presence of multiple objectives

We are looking for sparse NNs with high classification accuracy. That is, we try to

optimize two different objectives. There are several ways of dealing with multiple

goals and we describe two of them in the following.

(A) Linearly aggregated objectives are subject to selection. In the first

case the algorithm in Fig. 2 uses a scalar fitness Φ(a) for any individual a given by

the weighted linear aggregation

Φ(a) := γCE · CE(t)
a (Dtrain ∪ Dval) +MSE(t)

a (Dtrain ∪ Dval)

+γhidden · n
(t)

hidden(a) +γweights · n
(t)

weights(a)
(2)

supposed to be minimized. The weighting factors are chosen such that typically γCE·

CE(t)
a (Dtrain∪Dval) � γhidden·n

(t)

hidden(a) ≈ γweights ·n
(t)

weights(a) � MSE(t)
a (Dtrain∪

Dval) holds. Note that in our application we tolerate an increase in the number of

connections as long the number of neurons decreases.

Let O(t) contain all offspring produced at generation t by the parent population

P(t). Based on the fitness Φ EP-style tournament selection28 with 5 opponents is

applied to determine the parents P(t+1) for the next generation from P(t) ∪ O(t).

(B) Vector-valued objectives are subject to selection. In the second case the

evolutionary algorithm in Fig.2 performs advanced EMO. It uses a selection method

based on the Fast Non-Dominated Sorting Genetic Algorithm (NSGA-II ).12

We first map the elements of the genotype space (decision space) to n-dimen-

sional real-valued vectors z = (z1, . . . , zn) of the objective space. In our case

we map the individual a that has already finished training to the vector za =

(nhidden(a), CEa(Dtrain ∪ Dval)). Both objective components are subject to mini-

mization. The elements of the objective space are partially ordered by the domi-

nance relation 3 (z dominates z
′) that is defined by

z 3 z
′ ∈ Rn ⇔ ∀ 1 ≤ i ≤ n : zi ≤ z′i ∧ ∃ 1 ≤ j ≤ n : zj < z′j (3)

stating that vector z performs better than z
′ iff z is as least as good as z

′ in all

objectives and better with respect to at least one objective. Considering a set M
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Fig. 3. The figure on the left illustrates how the crowding distance9 C(aj) is computed. The black
dots are the elements of Mi+1 and the white dots of belong to the Pareto front PMi

. The figure on
the right depicts the union of two different Pareto fronts P (white dots) and P ′ (black dots). The
hypervolumes29 and coverage differences of P and P ′, respectively, are given by HP = (α+γ)/V ,
HP ′ = (β + γ)/V , DP,P ′ = α/V , and DP ′,P = β/V . The grey dots do not necessarily belong to
one of the two Pareto fronts shown in the figure but define the size of the reference area.

of n-dimensional vectors, the subset PM ⊆ M consisting only of those vectors that

are not dominated by any other vector of M is called the Pareto front of M . As in

the NSGA-II (environmental) selection scheme, we first assign to each individual

a ∈ P
(t)∪O

(t) a rank value R(t)(a) based on its degree of non-domination in objective

space. We define the chain of subsets Mi, i ∈ N, by M1 ⊇ M2 := M1\PM1 ⊇ M3 :=

M2\PM2 ⊇ . . . , where A\B denotes the portion of the set A that is not part of

set B. Then the rank operator R(t)(a) assigns each individual a ∈ P(t) ∪ O(t) the

index i of the corresponding Pareto front PMi
that includes the objective vector of

a. Furthermore the NSGA-II ranking takes the diversity of the population (in the

objective space) into account. The diversity is measured by the crowding distance

C(a), the size of the largest cuboid (precisely the sum of its edges) in objective

space enclosing the vector za, a ∈ PMi
, but no other objective vector from PMi

,

see Fig. 3 (left). Then all individuals a ∈ P(t) ∪ O(t) are sorted in ascending order

according to the partial order ≥n defined by

ai ≥n aj ⇔
(

R(t)(ai) < R(t)(aj)
)

∨
(

R(t)(ai) = R(t)(aj) ∧ C(ai) ≥ C(aj)
)

(4)

and the first |P| individuals form the new parent population P(t+1). We refer to the

described selection method as NSGA-II selection throughout this article.

2.2.5. Search strategy adaptation: Adjusting operator probabilities

A key concept in evolutionary computation is strategy adaptation, i.e., the auto-

matic adjustment of the search strategy during the optimization process.30,31,32
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Not all operators might be necessary at all stages of evolution. In our case, ques-

tions such as when fine-tuning becomes more important than operating on receptive

fields cannot be answered in advance. Hence, the application probabilities of the 8

variation operators are adapted using the method from Igel and Kreutz,31 which

is inspired by Davis’ work.33 The underlying assumption is that recent beneficial

modifications are likely to be also beneficial in the following generations.

The 8 elemental operators are divided into five groups, those adding connections,

deleting connections, adding nodes, deleting nodes, and solely modifying weights.

Let Ω be the set of variation operators and let p
(t)
o be the probability that o ∈ Ω

is chosen at generation t. The initial probabilities for operators within a group are

the same and add up to 0.2. Let O
(t)
o contain all offspring produced at generation

t by an application of the operator o. The case that an offspring is produced by

applying more than one operator is treated as if the offspring was generated sev-

eral times, once by each operator involved. The operator probabilities are updated

every τ generations. Here we set τ = 4. This period is called an adaptation cycle.

The average performance achieved by the operator o over an adaptation cycle is

measured by

q(t,τ)
o :=

τ−1
∑

i=0

∑

a∈O
(t−i)
o

max (0, B(t)(a))
/

τ−1
∑

i=0

∣

∣O
(t−i)
o

∣

∣ , (5)

where B(t)(a) represents a quality measure proportional to some kind of fitness

improvement. This is for the scalar value based selection scheme, case (A),

B(t)(a) := Φ(a) − Φ(parent(a)) (6)

and for the vector-valued selection scheme, case (B),

B(t)(a) := R(t)(parent(a)) − R(t)(a) (7)

respectively, where parent(a) denotes the parent of an offspring a. The operator

probabilities p
(t+1)
o are adjusted every τ generations according to equations

p̃(t+1)
o :=

{

ζ · q
(t,τ)
o /q

(t,τ)

all + (1 − ζ) · p̃
(t)
o if q

(t,τ)

all > 0

ζ/|Ω| + (1 − ζ) · p̃
(t)
o otherwise

(8)

and

p(t+1)
o := pmin + (1 − |Ω| · pmin)p̃(t+1)

o

/

∑

o′∈Ω

p̃
(t+1)
o′ . (9)

The factor q
(t,τ)

all :=
∑

o′∈Ω q
(t,τ)
o′ is used for normalization and p̃

(t+1)
o stores the

weighted average of the quality of the operator o, where the influence of previous

adaptation cycles decreases exponentially. The rate of this decay is controlled by

ζ ∈ (0, 1], which is set to ζ = 0.3 in our experiments. The operator fitness p
(t+1)
o

is computed from the weighted average p̃
(t+1)
o , such that all operator probabilities

sum to one and are not lower than the bound pmin < 1/|Ω|. Initially, p̃
(0)
o = p

(0)
o for

all o ∈ Ω.



10 Stefan Wiegand, Christian Igel, and Uwe Handmann

The adaptation algorithm itself has free parameters, pmin, τ and ζ. However,

in general the number of free parameters is reduced compared to the number of

parameters that are adapted and the choice of the new parameters is considerably

more robust. Both τ and ξ control the speed of the adaptation; a small ξ can

compensate for a small τ (τ = 1 may be a reasonable choice in many applications).

The adaptation adds a new quality to the algorithm as the operator probabilities

can vary over time. It has been empirically shown that the operator probabilities

are adapted according to different phases of the optimization process and that the

performance of the structure optimization benefits from this adaptation.31

3. Experimental Evaluation

It has already been shown that the size of the face detection network of the Viisage-

FaceFINDERr system can be successfully reduced without loss of accuracy by the

scalar fitness value approach (A).7 Here, we want to study whether we can improve

these results by using the NSGA-II selection scheme (B). This is done by comparing

the performance of our hybrid algorithm using either selection variant (A) or (B).

We assume that the runtime of our algorithm is strongly dominated by the number

of fitness evaluations (due to the efforts spent for learning) and that the the number

of fitness evaluations allowed is fixed. Then there is roughly no difference in runtime

between the single- (A) and the multi-objective approach (B).

3.1. Comparing multi-objective optimization algorithms

In single-objective optimization the performance can be assessed by looking at

scalar objective function values. In EMO performance comparisons are not straight-

forward because the the outcomes are sets of vectors.34 Still, it is possible to make

statements about the relative quality of different Pareto fronts. Let P(Rn) denotes

the power set of Rn. A set A ∈ P(Rn) can be defined to be better than a front

B ∈ P(Rn) by the relation A B B (A weakly dominates B) given by

A B B iff A 6= B and ∀ b ∈ B : ∃ a ∈ A : b is weakly dominated by a . (10)

Weak dominance of z compared to z
′ means that objective vector z is not worse

than z
′ in all objectives. We would also like to make some quantitative statements

about how much Pareto fronts outperform each other. Independent of which quan-

titative indicator I we are going to apply it should always be compliant with the

A B B relation, i.e., statements such as “A outperforms B concerning I” should

also always imply ABB and vice versa. As shown by Zitzler et al.35 it is impossible

to provide a finite set of unary quantitative indicators Ii : P( � n) → � , 1 ≤ i ≤ m,

such that in general I1(A) > I1(B) ∧ . . . ∧ Im(A) > Im(B) ⇔ A B B. However, we

can achieve

(A B B ⇒ I(A) > I(B)) and (I(A) > I(B) ⇒ B 7 A) , (11)
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for example when using the hypervolume-indicator29 HP explained in Fig.3 (right).

It measures the portion of objective space that is weakly dominated by the Pareto

front P .

Binary (not necessarily symmetric) indicators I : P( � n) × P( � n) → � , which

assign real numbers to ordered pairs of Pareto fronts, do not suffer from the restric-

tion of unary indicators described above. Here we consider the coverage-difference-

indicator DA,B := HA+B − HB .29 It reflects the size of the objective space that is

weakly dominated by the set A but not by B, see Fig. 3 (right). It holds

(DA,B > 0 and DB,A = 0) ⇔ (A B B) . (12)

The coverage difference DA,B also allows to draw conclusions of the form (DA,B =

0) ∧ (DB,A = 0) ⇔ (A = B), and (DA,B > 0) ∧ (DB,A > 0) ⇔ (A||B), where A||B

denotes that A and B are incomparable. Following Zitzler’s suggestion, we only

consider normalized quantities. All hypervolumes are divided by V :=
∏n

i=1(z
max
i −

zmin
i ), where zmax

i and zmin
i are the maximum and minimum value the i-th objective

of a vector z can take. In our experiments we determine zmax
1 , zmax

2 and zmin
1 , zmin

2

empirically by looking at all Pareto fronts obtained.

In each trial of our optimization algorithm, we maintain an additional archive

A(t+1) := PSt+1

t′=0
P(t′) = PA(t)∪P(t+1) (13)

starting from A(0) = PP(0) . In our optimization scenario |A(t)| is always small and

we do not need to discard any non-dominated solutions. We regard the final archive

as the outcome of an optimization trial.

Let A1, . . . , AT and B1, . . . , BT be the final outcomes (i.e., Pareto fronts) of our

hybrid evolutionary algorithm using either selection method (A) or (B) starting from

T independent random seeds. We calculate the median and the median absolute

deviation (mad) of HA1 , . . . , HAT
and of HB1 , . . . , HBT

. The Wilcoxon-rank-sum

test is applied to decide whether the distributions are different. Then we calculate

all DAi,Bj
and DBj ,Ai

for 1 ≤ i, j ≤ T and compute the median and the median

absolute deviation of the quantities ∆Ai,Bj
:= DAi,Bj

− DBj ,Ai
= −∆Bj ,Ai

and

DAi,Bj
. Furthermore we calculate for 1 ≤ i, j ≤ T

PAiBB := |
{

(Ai, Bj) : DAi,Bj
> 0 ∧ DBj ,Ai

= 0, 1 ≤ j ≤ T
}

| · 1/T , (14)

PAi||B := |
{

(Ai, Bj) : DAi,Bj
> 0 ∧ DBj ,Ai

> 0, 1 ≤ j ≤ T
}

| · 1/T , (15)

PBjBA := |
{

(Ai, Bj) : DAi,Bj
= 0 ∧ DBj ,Ai

> 0, 1 ≤ i ≤ T
}

| · 1/T , (16)

PBj ||A := |
{

(Ai, Bj) : DAi,Bj
> 0 ∧ DBj ,Ai

> 0, 1 ≤ i ≤ T
}

| · 1/T , (17)

that is, in (14) the average number of trials from algorithm (B) that perform worse

than trial Ai, in (15) the average number of trials from algorithm (B) that are

incomparable to trial Ai, in (16) the average number of trials from algorithm (A)

that perform worse than trial Bj , and finally in (17) the average number of trials

from algorithm (A) that are incomparable to trial Bj .
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3.2. Experimental setup

We want to quantify the benefits of hybrid optimization of NNs for face detection

either using selection method (A) or (B) and not the performance of the complete

Viisage-FaceFINDERr including preprocessing and face recognition. For compar-

ison we trained the reference topology 100 times for 2000 iterations using the im-

proved Rprop learning procedure on Dtrain. From all trials and all iterations we

selected the network aref with the smallest classification error on Dval ∪ Dtest. In

the following, all results are normalized by the performance of aref . For example,

the normalized classification error of an evolutionary optimized NN a is given by

CE′
a(D) := CEa(D)/CEaref

(D) and the normalized number of hidden neurons by

n′
hidden(a) := nhidden(a)/52.

We start T = 10 trials of both variants (A) and (B) of the evolutionary algorithm

described above for 200 generations (i.e., 5025 fitness evaluations per trial). For each

evolved NN we calculate the value CE′(Dtest). Although cross-validation is applied

when training the NNs, the evolutionary optimization may lead to overfitting, in

our case it overfits the patterns of Dtrain ∪ Dval. Hence, we additionally introduce

the data set Dtest to finally choose models that generalize well. That is, we use

Dtest for some kind of cross-validation of the evolutionary process. When selecting

the reference topology aref , we decide in a similar way as in picking a solution from

the evolved architectures, but taking also Dval into account. This is reasonable,

since Dval has not been applied during NN training.

4. Results

For the evolved Pareto NNs, the classification errors and the corresponding numbers

of hidden neurons are depicted in Fig. 4 (left) as coordinates in a plane. The table

in Fig. 4 (right) characterizes the Pareto fronts (i.e., the final archives) produced

by using selection scheme (A) and (B), respectively.

The median of the portion of the area weakly dominated by the outcomes of

variant (B) is significantly larger than the area weakly dominated by Pareto fronts

produced by selection scheme (A) (Wilcoxon-rank-sum-test, p < 0.001). Further,

almost all of the space which is weakly dominated by unions Ai ∪ Bj is already

weakly dominated by the front Bj for all 1 ≤ i, j ≤ T . Evidently, selection method

(B) seems to be superior to (A).

No Pareto front which was generated by selection scheme (A) weakly dominates

any of selection variant (B). When we look at the medians of our performance

indicators shown in Fig. 4 (right) we can state: The outcome of selection method

(B) is better than 35% of the outcomes of (A). A Pareto front with respect to (B)

is incomparable to 65% of the outcomes of (A), and 55% vice versa. The outcome

of (A) is worse than 45% of trials with regard to (B).

In Tab. 1 we illustrate some details of the most interesting solutions from the

“meta Pareto front”. The latter denotes the Pareto front of all the NNs of all
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Fig. 4. Evolved solutions by selection variants (A) and (B). The left plot shows the two objec-
tives, the normalized classification error CE′(Dtest) and the normalized number of hidden neurons
n′

hidden, for all NNs of all Pareto fronts of all trials. The circles represent the outcomes of selec-
tion method (A), and the crosses the results of the variant (B). The non-dominated NNs, i.e.,
those constituting the “meta Pareto front”, are highlighted. The right table shows the median and
the median absolute deviation (mad) with respect to some performance indicators explained in
the text. We define the multisets HR := {HRi

| i = 1, . . . , T},DR,S := {DRi,Sj
| i, j = 1, . . . , T},

∆R,S := {−∆Ri,Sj
| i, j = 1, . . . , T},PR||S := {PRj ||S

| j = 1, . . . , T}, and PRBS := {PRj BS | j =

1, . . . , T}.

fronts independent of the actual selection variant. There are only three solutions

that were generated by selection variant (A) that belong to the “meta Pareto front”.

The other ones were evolved using selection method (B). Interestingly the outcomes

of (A) are extreme solutions in the sense that the classification accuracy criterion is

smallest at the cost of being achieved by the largest NN structures. It turns out that

such solutions have been found in early stages of evolution. All NNs of the “meta

Pareto front” in Tab. 1 which consist of at least 25 hidden nodes are comparable

to the reference topology with respect to the classification error on Dtest. This

means, the numbers of hidden neurons are reduced by up to 50% without a loss

of classification accuracy. A generalization performance test on a fourth data set

Dextern, which is independent from all data used for optimization and the final NN

Table 1. Details of interesting NNs from the “meta Pareto front”. The first three approximate
Pareto optimal solutions were found with selection method (A), all other with variant (B).

nhidden 53 52 50 48 35 34 33 32 26 25 . . . 0
nweights 5860 5756 5447 2891 2355 2336 2310 2387 3428 3496 . . . 292

n′
hidden

1.02 1.00 0.96 0.92 0.67 0.65 0.63 0.62 0.50 0.48 . . . 0

CE′(Dtest) 0.869 0.87 0.89 0.90 0.91 0.92 0.93 0.95 0.96 0.99 . . . 2.27
CE′(Dextern) 0.91 0.90 0.89 1.00 1.00 0.99 0.97 0.97 1.14 1.16 . . . 2.54
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choice, demonstrates that most of our considerably smaller NNs perform at least

as good as the expert-designed architecture.

5. Discussion and conclusions

The proposed hybrid evolutionary algorithms using either scalar fitness or the

NSGA-II selection scheme successfully solve the problem of reducing the number of

hidden neurons of the Viisage-FaceFINDERr face detection neural network (NN)

without loosing detection accuracy. The speed of classification whether an image

region corresponds to a face or not has been improved by up to 50% compared to

a reference topology proposed in the literature. By speeding up classification, the

rate of complete scans of video-stream images can be increased leading to a more

accurate recognition and tracking of persons.

We have revealed that in our face detection scenario structure optimization of

NNs is indeed a non-trivial multi-objective problem. The results concerning the

performance indicators HR, DR,S, PR||S , and PRBS are not very surprising, since

we have compared a single- against a multi-objective selection scheme on the basis

of multi-objective performance indicators. Pareto fronts obtained by evolutionary

multi-objective optimization can be considered as approximations of the sets of op-

timal trade-offs between several objectives. By using the linear aggregation scheme

for selection and choosing the weighting factors for the objectives already before

search we take a major decision about what kind of trade-offs are accessible. That

is, we probably restrict the optimization algorithm to sample only within a rela-

tively close area in objective space—solutions that do not match our prior decision

cannot be found. The application of a multi-objective selection scheme such as the

one from NSGA-II facilitates a decision about the best compromise between multi-

ple objectives after the optimization process. The multi-objective selection scheme

requires less expert knowledge (it can be used more “out-of-the-box”), because no

crucial weighting factors have to be chosen in advance.

The results of the multi-objective performance indicators also give some evidence

that the NSGA-II selection leads to preferable solutions in a more robust way

compared to the linear aggregation selection scheme. It should be noted that there

are several evolved NNs (see Tab.1) that have more weights than the initial one, but

fewer hidden nodes. Such solutions cannot be found by a pure pruning algorithm.

The convincing results encourage to adopt our hybrid algorithm with vector-valued

selection for the automatic construction of NNs for other classification tasks.

When evolving NNs one is usually interested in well generalizing solutions. How-

ever, even if the classification error on a fixed additional data set that is not con-

sidered for adapting the weights (neither for training nor for early stopping) is—

additionally or solely—used in the fitness calculation, the evolved NNs tend to

overfit to the data responsible for their selection. Therefore we introduced addi-

tional data sets to reliably assess generalization performance. Our way of perform-

ing cross-validation of both, learning and evolution, is an improvement compared to
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other methods. Nonetheless, the problem of evolving good generalizing NNs requires

further investigation.
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