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Abstract—In this paper we discuss parallelization ap-
proaches for generic mean shift clustering. We provide an
algorithmic skeleton which allows an easy creation of platform
specific implementations, be it small scale systems as multicore
CPUs, large GPUs or even distributed cluster systems. Addi-
tionally we provide an exhaustive runtime complexity analysis
and various remarks for further research. In order to illustrate
the practicability of our theoretic framework we discuss a GPU
implementation which exhibits significant speedups for small
and large scale datasets.
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I. INTRODUCTION AND PREVIOUS WORK

The mean shift algorithm as explained in e.g. [1], [2]

or in the original paper [3], is a non-parametric method

which allows one to approximate and select modes in a

sample from some arbitrary distribution of multidimensional

datapoints. It is widely used in the area of image processing

as e.g. a clustering method in the HOG algorithm [4] or as

tracking method in [5]. Although it exhibits a simple design,

it may become unfeasible in certain situations if the sample

size grows to large. One example is its application in the

HOG algorithm, even if the detection system itself exhibits

a high efficiency (e.g. [6]), it may produce a number of

results for which the mean shift clustering would become

the systems bottleneck. Modern multicore CPUs and GPUs

provide excellent system architectures for parallelized mean

shift execution. Yet up to this point we know of no existing

theoretical analysis of the mean shifts parallelization poten-

tial. There already exist GPU accelerated implementations

e.g. a naive version in the OpenCV library or a very

specialized version for tracking applications in [7] using

CUDA.

In this paper we will state a theoretical framework for

the mean shift algorithm itself and analyze its applicability

for small scale as well as large scale parallelization. Our

analysis of runtime complexities respects generic system

aspects as e.g. memory accesses and parallelization factors.

The algorithmic skeletons can be used for further theoretical

studies or as a guideline for designing platform specific

implementations, be it GPUs or large cluster systems.

Section II introduces the classical mean shift algorithm and

derives a naive parallelizable form. In section III this naive

form will be extended to the final algorithmic skeleton which

also represents the basis for our GPU formulation in section

IV. Throughout these two section we provide a rigorous

analysis of the skeletons. The corresponding results will be

discussed in section V, followed by a conclusion of our

work.

II. THE MEAN SHIFT ALGORITHM

We will now briefly discuss the original algorithm (with

notation lend from [4]) and derive a massively parallelizable

form. Let S ⊆ {x ∈ Rn} be a sample of n k-dimensional

datapoints drawn from a distribution D. For any given point

p ∈ S the mean shift algorithm will iteratively compute an

approximation of the closest mode yp to it. This is done via

the following iteration equation

yp = Hh(yp)

n
∑

i=1

ωi(yp)Hi
−1yi (1)

with

ωi(yp) =
|Hi|

−1/2exp(−D2[yp, yi, Hi]/2)
∑n

j=1 |Hj |−1/2exp(−D2[yp, yj , Hj ]/2)
(2)

⊎n
i=1{yi} = S and

D2[yp, yj , Hj ] := (yp − yi)
THi

−1(yp − yi) (3)

These expressions require a more detailed explaination, Hi

is the so called uncertainty matrix and takes the role of an

estimated covariance matrix. Thus D2[yp, yj , Hj ] becomes

the Mahalanabois distance between yp and yj . Note that

in its original form the algorithm uses an undefined kernel

K(yp, yi), yet as the RBF kernel is most common, we fix

K to be of this form throughout the paper. In addition to

the generic kernel, the original algorithm does not utilize

statistical methods to compute the distance between data
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points, thus it does not use any covariance matrices. The

Matrix Hh is defined indirectly through

H−1
h (y) =

n
∑

i=1

ωi(y)H
−1
i (4)

In practical applications one usually has a closed expression

to calculate Hi, i.e. Hi = Hi(yi).

Remark. Note that if Hi is a diagonal matrix, Hh is one

as well and can be calculated with high numerical stability.

By rewriting eq. 1 and eq. 2 we obtain

yp = Hh(yp)

∑n
i=1 |Hi|

−1/2exp(−D2[yp, yi, Hi]/2)Hi
−1yi

∑n
j=1 |Hj |−1/2exp(−D2[yp, yj , Hj ]/2)

(5)

Which indicates that |Hi|
−1/2exp(−D2[yp, yi, Hi]/2) oc-

curs exactly the same amount of times in nominator and

denominator. With this observation one can significantly

reduce the required calculations by simply evaluating the

expressions in lockstep. The same holds for eq. 4, which

has the form

H−1
h (yp) =

∑n
i=1 |Hi|

−1/2exp(−D2[yp, yi, Hi]/2)Hi
−1

∑n
j=1 |Hj |−1/2exp(−D2[yp, yj , Hj ]/2)

(6)

Furthermore the denominators in eq. 5 and eq. 6 cancel

each other out. This induces the natural algorithm 1. The

Algorithm 1 approxMode (calculation of eq. 1)

Require: start point yp ∈ Rk, n
1: yp,t = 0;Hh,t = 0; e = 0;

2: for i=0; n− 1 do

3: calculate H−1
i (yi)

4: e = |Hi|
−1/2exp(−D2[yp, yi, Hi]/2);

5: Hh,t += eH−1
i (yi)

6: yp,t += eH−1
i (yi)yi;

7: end for

8: yp = H−1
h,t yp,t

runtime complexity is mainly determined by the calculation

of H−1
i (yi), which involves two separate operations,

the calculation of H−1
h,t and the determinant |Hi|. The

computation of H−1
i (yi) also involves the determination

of Hi itself. Let us denote the corresponding complexity

classes by OH−1

i
and OHi

, respectively. With OH−1

h

we shall denote the complexity class of determining

H−1
h,t and with O|Hi| that of calculating the determinant.

Differentiating between both matrix inversions allows to

incorporate inversion algorithms which exploit certain

features of the matrices and thus differ in their complexity.

Yet one also has to account for the elementary matrix

operation, i.e. addition, matrix-vector multiplication and

scalar product computation. We express this through the

classes O+,Om∗v,Ov∗v respectively.

Lemma 1. The complexity for a single execution of alg. 1

in a general mean shift calculation is O(n · (λ + κ + ξ +
γ + ρ+ φ) + γ + η), with κ ∈ OH−1

i
, λ ∈ OHi

, η ∈ OH−1

h

,

ξ ∈ O|Hi|, γ ∈ Om∗v, φ ∈ O+ and ρ ∈ Ov∗v.

Proof: A total of n iterations will be executed. Each

iteration requires (in following order): calculating Hi, in-

verting Hi, calculating the determinant |Hi| and deter-

mining the Mahalanabois distance D2. So far this yields

λ+κ+ξ+(ρ+γ)+φ. Scaling each component of H−1
i by e is

equally complex as adding two matrices, i.e. φ. Afterwards

one has to account for updating Hh,t, multiplying yi by

eH−1
i and updating yp,t. This results in φ + φ + γ + ρ, as

updating yp has the same complexity as calculating the inner

product. Summarized for we have n · (λ+κ+ξ+γ+ρ+φ)
which is followed by η for inverting Hh and γ for calculating

yp.

Remark. For a general approach, using state-of-the-art

algorithms, this complexity transforms to O(n · (λ+ k3)).

The amount of iterations of alg. 1 can be limited by an

upper limit mit and a distance threshold td for yp between

two consecutive iterations (see alg. 4 for details). Let Eit(S)
be the expected amount of alg. 1 repetitions, which only

depends on the current sample S. This implies an overall

complexity of O(E ·n2 · (λ+κ+ ξ+γ+ρ+φ)+nγ+nη),
note that this expression refers to the approximation of all

n modes.

As all mode approximations do not rely on each other it is

possible to execute them in parallel. This would scale the

complexity down by 1/z with z being the amount of parallel

processing units (PPUs).

A. Optimization for diagonal regular covariance matrices

and massive parallelization

With the above analysis it becomes obvious that

for diagonal regular covariance matrices the stated

complexity can be reduced dramatically. From now we

assume Hi(yi)) = diag(σ1(yi), ..., σk(yi)), which implies

OH−1

i
= OH−1

h

= O(k) (i.e. only the non-zero elements

along the diagonal must be inverted) and O|Hi| = O(k)
(summing up only diagonal elements).

In order to explain our approach for GPU architectures we

must extend out approach from above in terms of parallel.

Let us assume that in addition to our z processing unit, each

of them incorporates τ ≤ n primitive units (PUs) (i.e. units

without complex mechanisms as e.g. instruction prefetching

or branch prediction). We will now distribute the iterations

of the for-loop in alg. 1 over the PUs. Note that if each

PU executes a subset I ⊆ {1, ..., n} of iterations, we would

obtain the previously mentioned parallelization factor 1/z
in the case of |I| = n, τ = 1, in case of |I| = 1, τ = n we
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would obtain a spectacular boost of 1/n per PPU (as all

for-loop evaluation would be executed in parallel). We will

elaborate with great detail on such cases in the following

sections.

Using this approach alg. 1 becomes alg. 2, where the index

pu indicates a variable local to each PU and the function

’getPUIdx()’ returns the index of the PU. This formulation

Algorithm 2 approxMode (Parallel calculation of eq. 1)

Require: start point yp ∈ Rk, load factor fload ≤ τ , τ , n
1: step = ⌈n/fload⌉
2: yp,t = 0;Hh,t = 0;

3: ipu =getPUIdx(); → PU local work begins here

4: istart,pu = ipu · step
5: iend,pu = (ipu + 1) · step
6: yp,t,pu = 0;Hh,t,pu = 0; epu = 0;

7: if iend,pu − istart,pu < step then

8: iend,pu = iend,pu − istart,pu
9: end if

10: for i=istart,pu; iend,pu do

11: calculate H−1
i (yi)

12: e = |Hi|
−1/2exp(−D2[yp, yi, Hi]/2);

13: Hh,t,pu += eH−1
i (yi)

14: yp,t,pu += eH−1
i (yi)yi;

15: end for

16: parallel reduction of Hh,t,pu to Hh,t

17: parallel reduction of yp,t,pu to yp,t
18: if ipu == 0 then

19: yp = H−1
h,t yp,t

20: end if

does not require n = l · τ , but implies that each PPU

must calculate a complete evaluation of eq. 1 for only a

single point yp. The load factor fload indicates how many

iterations, i.e. ⌈n/fload⌉, should be handled by a single

PU. This algorithm will be executed in parallel by each

PU on a PPU, it does not require a specific execution

paradigm as e.g. a lockstep execution or any specific system

architecture as e.g. a GPU SIMD environment. Allthough

one would benefit from this strategy for a large n, it yields

a significant drawback for small n as well as for a small

number of PPUs with many PUs. For small n, i.e. (n < τ ),

one would like to be able to process multiple evaluations,

i.e. for different yp, on a single PPU in order to reduce

underutilization. The same holds for a small number of

PPUs, i.e. z < n. This issue can be solved through the

concept of virtual PPUs which will be explained in the next

section.

Remark. If τ ∤ n, the algorithm will underutilize the

available PUs independent of the chosen value for fload.

Only for fload = τ will all PUs be utilized and the amount

of iterations per PU minimized.

Let us now analyze the complexity which we have

achieved with alg. 2. Constants will only be carried into

the analysis if they are induced through this algorithm, i.e. if

they haven’t occured in alg. 1. This way a direct comparison

of both approaches remains possible. Furthermore due to

the needed parallel reduction we assume a uniform memory

access (UMA, [8]) architecture with a fixed cost c for every

data access on scalar elements.

Theorem 1. Alg. 2 exhibits a complexity of O(⌈n/fload⌉ ·

(5k+λ)+2 log(τ) · k+2(
∑log

2
τ

i=1
τ
2i
) · k · c+ℵ(k, τ)+ k).

fload = τ is the optimal choice. If fload ∤ n then at least

one PU will not be fully utilized. In case of log2(τ) ∈ N we

obtain ℵ(k, τ) = 0.

Proof: All initializations can be done in constant time

(line 1-9), the for loop involves exhibits ⌈n/fload⌉ iterations

with the same complexity as in alg. 1. Due to the diagonal

matrices the complexity for the algorithm until line 15 is

⌈n/fload⌉ · (5k + λ), as the PUs will execute their local

for-loops in parallel. The interesting part are the parallel re-

ductions in line 16 and 17. We will state the complexity only

for line 16 as the same arguments hold for line 17. There

are log2(τ) iterations involved in the reduction, if τ is not a

power of two the parallel reduction (PR) will only process

l < k data elements with l being the nearest power of two.

The remaining elements must be processed otherwise, e.g.

sequentially, which induces an additional complexity term

ℵ(k, τ) (which equals 0 in case that log2(τ) ∈ N). Each of

the active PUs in one of the PR iterations has to sum up k
elements, i.e. add Hh,t,pu′ of an adjacent PU pu′ to its own

copy. Thus in total there are log(τ)·k calculations. Yet, since

each PU can access the memory of another one in a uniform

way, we have to account for that with (
∑log

2
τ

i=1
τ
2i
) · k · c.

Since this holds for the second PR as well, we obtain

the factor 2. Finally a single matrix multiplication remains

which has a complexity of k.

In case if fload < τ we obtain n/⌈n/fload⌉ < τ , which in

turn implies the existence of at least one underutilized PU.

Trivially this holds as well for the case n < τ . Note that

fload = τ is not sufficient for full utilization. Observe that

(l · τ + p = n) ⇒ n/⌈n/τ⌉ < τ . Thus only if additionaly τ
divides n we obtain full utilization.

Remark. In order to force ℵ(k, τ) = 0 one could pad

n to a power of 2 with numerically feasible dummy data.

Furthermore one has to restrict the available number of PUs

to a power of 2 closest to τ , i.e. set fload = 2x < τ . Yet this

in turn would imply underutilization, thus such a decision

must be evaluated carefuly.

Although it might seem that the new algorithmic skeleton

is much more complicated than the first one, we will show

that with a fitting adaptation for the system architecture

it can provide a significant improvement to the naive

approach. Yet before that, we will increase the flexibility of
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alg. 2.

III. VIRTUAL PARALLEL PROCESSING UNITS

In order to circumvent the drawbacks of alg.2 in the

context of small data sets as well as in the case of only

a few PPUs with many PUs (e.g. GPU architectures). We

modify the algorithm only marginally by subdividing the

PUs on a PPU into virtual PPUs (vPPUs). For this purpose

we introduce a new variable fvppu which states how many of

the PUs should form a vPPU. Thus the load factor becomes

local to each vPPU.

Algorithm 3 approxMode (Parallel calculation of eq. 1)

Require: start points yp,j ∈ Rk, load factor fload ≤
τ/fvppu, τ , n, fvppu

1: step = ⌈n/fload⌉
2: yp,t = 0;Hh,t = 0;

3: ipu =getPUIdx(); → PU local work begins here

4: jpu = ⌊ipu/fvppu⌋;

5: istart,pu = (ipu mod fvppu) · step
6: iend,pu = ((ipu mod fvppu) + 1) · step
7: yp,t,pu = 0;Hh,t,pu = 0; epu = 0;

8: if iend,pu − istart,pu < step then

9: iend,pu = iend,pu − istart,pu
10: end if

11: for i=istart,pu; iend,pu do

12: calculate H−1
i (yi)

13: e = |Hi|
−1/2exp(−D2[yp,jpu , yi, Hi]/2);

14: Hh,t,pu += eH−1
i (yi)

15: yp,t,pu += eH−1
i (yi)yi;

16: end for

17: vPPU-local parallel reduction of Hh,t,pu to Hh,t

18: vPPU-local parallel reduction of yp,t,pu to yp,t
19: if ipu mod fvppu == 0 then

20: yp = H−1
h,t yp,t

21: end if

Remark. In order to keep the analysis simple we assume

that fvppu | τ , the reader interested in the generic case can

generalize our analysis with additional complexity terms in

the same way we did with ℵ(k, τ).

Thus the runtime complexity of alg. 3 is given by

Theorem 2. Alg. 3 exhibits a complexity of O(⌈n/fload⌉ ·

(5k + λ) + 2 log(τ ′) · k + 2(
∑log

2
τ ′

i=1
τ ′

2i
) · k · c+ ℵ(k, τ ′) +

k). fload = τ/fvppu =: τ ′ is the optimal choice. If

(fload/fvppu) ∤ n then at least one PU will not be fully

utilized. In case of log2(τ
′) ∈ N we obtain ℵ(k, τ ′) = 0.

Proof: Follows directly from theorem 1 and remark III.

Remark. The complexity of alg.3 may seem identical to that

of alg. 2, yet alg. 3 handles a set {yp,j} of data points!

A general measure for PPU (and PU) underutilization can

not be stated without defining the system architecture to

use. An example for that would be a modern GPU, which

exhibits a very specific scheduling policy with respect to the

amount of PU local memory requirements. Whereas a cluster

system may distribute the computation in an arbitrary node

topology. Only by defining such parameters one can truly

assess the term utilization. We will give a detailed example

in section IV where we discuss the implementation for GPU

architectures.

One should note that alg. 3 does not impose any restric-

tion onto the matrix structures, amount of data points or

system architecture. It rather depicts a flexible skeleton for

mean shift computation which can be easily parallelized for

arbitrary systems. We now state the complete mean shift

algorithm. Alg. 4 is self-explanatory to the larger part. For

Algorithm 4 Mean shift clustering

Require: set of n data points yi ∈ Rk, td, ǫ, mit

1: for i=0; n − 1 do → arbitrary iteration-distribution

over PPUs possible

2: yp,i,prev = 0; yp,i = yi; td,i = 0, c = 0;

3: while td,i > td || c < mit do

4: yp,i,prev = yp;

5: yp,i = approxMode(yp,i, ...);
6: td,i = dist(yp,i,prev, yp,i, ...);
7: c+ = 1;

8: end while

9: end for

10: {ỹp} = groupModes({yp,i}, ǫ)

every given data point yi we approximate a corresponding

mode yp,i. The for-loop iterations are independent to each

other, thus they (this includes approxMode and dist) can be

arbitrarily distributed among available PPUs. The algorithm

dist is discribed in alg. 5, its purpose is to calculate the

Mahalanabois distance between two data points. The while-

Algorithm 5 dist

Require: data points yi, yj ∈ Rk, covariance matrix Hi

1: d = D2[yj , yi, Hi]

loop terminates if either the distance threshold td or the

maximal number of iterations mit has been reached. After-

wards the modes are grouped into ǫ-regions {ỹp} through

algorithm groupModes({yp,i}, ǫ), which is stated in listing

6. This algorithm is inherently sequential and thus can’t be

effectively parallelized. Yet in the context of alg. 4 it can

be exchanged for more efficient variants. Our evaluations

in section V are based on alg. 6, as its runtime complexity
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Algorithm 6 groupModes

Require: data points yp,i ∈ Rk, ǫ
1: c = 0;exists = 0;

2: for i=0; n− 1 do

3: exists = 0;

4: for j=0; c do

5: if dist(ỹp,j , yp,i, ...) < ǫ then

6: exists = 1;

7: BREAK;

8: end if

9: end for

10: if exists == 1 then

11: add yp,i to list of ỹp;

12: end if

13: end for

has proven to be feasible for our application. The signature

wildcards “...” indicate that arbitrary algorithms can be

inserted at that position as long as their signatures are

identical up to the wildcard.

We conclude the section with following

Theorem 3. Alg. 4 exhibits a complexity of

O(E(S)/(z · τ/fvppu)(⌈n/fload⌉ · (5k+λ)+ 2 log(τ ′) · k+

2(
∑log

2
τ ′

i=1
τ ′

2i
) · k · c+ℵ(k, τ ′)+2k)+ ζ). With ζ ∈ Ogroup

being a function in the complexity class of alg. 6 and z the

amount of PPUs.

Proof: Almost every part follows from theorem 2. Alg.

3 allows to compute up to z · τ/fvppu approximation steps

in parallel. Whereas one final exection of alg. 6 is required,

thus the term +ζ.

IV. APPLICATION TO GPU COMPUTATION

We begin by stating our last assumption

regarding matrix structures, let Hi(yi) =
diag(σ1 exp(y

k
i ), ..., σk−1 exp(y

k
i ), σk) with σi being

fixed parameters. Thus Hi is assumed to be diagonal and

depends only on the last element of yi (al denotes the l-th
vector component).

Remark. With this assumption we obtain OHi
= O(k).

Thus the complexity of alg.3 becomes O(⌈n/fload⌉ · (6k) +

2 log(τ ′) ·k+2(
∑log

2
τ ′

i=1
τ ′

2i
) · k · c+k) for padded data sets

of size n.

The concept of PPU/PU can be directly translated to GPU

architectures as SMX/SP (Cuda) or compute unit/processing

element (OpenCL). But as mentioned before, many aspects

about thread scheduling and memory architectures must be

considered to utilize the efficiency of our approach. These

techniques are well beyond the scope of this paper, the

interested reader might refer to [9],[10],[11],[12] or [13] for

further details.

Implementing alg. 6 was done in two succeeding stages

using the OpenCL language, allowing its execution on mul-

ticore CPUs, NVidia GPUs as well as AMD GPUs. First we

ported the algorithm naively, i.e. not considering coalesced

global memory access and local bank conflicts. The second

implementation utilizes preloading of datapoints into local

memory and advanced synchronization mechanisms. In both

cases the grouping of approximated modes was done on the

host side using the system CPU. Due to the page limit of this

paper we can describe our optimization techniques for the

second variant only briefly. Alg. 7 will preload the datapoints

Algorithm 7 approxModes OpenCL implementation struc-

ture

Require: start points yp,j ∈ Rk, load factor fload ≤
τ/fvppu, τ , n, fvppu, preload size

1: init variables;

2: for x=0; preload iters do

3: preload batch of datapoints into local memory

4: Synchronization s1
5: for i=istart,pu; iend,pu do → lockstep exection

6: calculate H−1
i (yi)

7: e = |Hi|
−1/2exp(−D2[yp,jpu , yi, Hi]/2);

8: Hh,t,pu += eH−1
i (yi)

9: yp,t,pu += eH−1
i (yi)yi;

10: end for

11: Synchronization s2
12: vPPU-local parallel reduction of Hh,t,pu to Hh,t

13: vPPU-local parallel reduction of yp,t,pu to yp,t
14: end for

15: if ipu mod fvppu == 0 then

16: yp = H−1
h,t yp,t

17: end if

in sets of fixed size into local memory. As the local memory

is available to all workitems in a workgroup, this might

yield a speedup if multiple modes {yp,j} are approximated

by one workgroup. Otherwise the workitems would access

high-latency (i.e. ≈ 700 clock cycles) global memory. One

should note the two distinct strategy elements, first the use

of low latency memory and second the encapsulation of

multiple node approximations on one workgroup. If one

would choose to approximate a single mode per workgroup,

there would be no gain from local memory. More or less

surprisingly this approach yields little to no advance for

computing devices capable of global memory broadcasts

and lockstep execution, as the instructions are executing in

lockstep. I.e. when all processing elements access the same

memory position (local or global memory), this request will

be delivered as an efficient broadcast to them. In case of

a large number of scheduled workitems and no preloading,

the global broadcast latencies could be effectively hidden

and the preload approach would become contraproductive

due to the imposed synchronization mechanisms. These
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Figure 1. Execution speeds of alg. 4 and 7 on CPU and GPU. The GPU
exhibits a speedup of up to ≈ 176 compared to the execution on CPU side.

synchronization elements are depicted as s1 and s2, they

involve atomic integer operations and a semaphore shared

among the workgroups workitems. Furthermore changes in

the algorithms design easily lead to thread divergence and

thus, in the context of s1/s2, to barrier divergence [14], [15]

as well.

Another critical point of alg. 7 is the required amount of

memory per workgroup. Multiple workgroups can be sched-

uled for execution on a compute unit, yet it is the amount

of inbound workgroups which helps to mask the latencies

of memory accesses. The number of inbound workgroups is

determined by the available memory of a compute unit, the

lower the memory consumption of a workgroup the more of

them can be kept inbound. Thus if one decides to consume

too much local memory for preloading, this number will be

significantly reduced.

These aspects will become visible within our results in the

next section. Yet, from a general perspective alg. 7 allows

one to achieve high throughput in case of memory types

with large latencies (e.g. zero-copy host RAM), additionally

it provides the possibility to implement access patterns to

local memory preloading if no local memory broadcasts

are available. Furthermore our algorithm can be split across

multiple GPUs in a single system.

V. RESULTS

We evaluated our algorithms on a Radeon7970 which pro-

vides 32 compute units (PPUs) with a total of 2048 stream

cores (PUs), 32KB of local memory per workgroup and 3GB

of global memory. Thus each PPU holds 64 PUs. The host

system provided a Core-i7 3820 3.6GHz CPU, 64GB RAM

and was running ArchLinux 3.15.5-1 with the SimpleHydra

SDK [16]. The parameters for the algorithm were identical

for all our experiments; ǫ = 0, mit = 100, td = 10−5.

The choice for ǫ = 0 will become clearer when we discuss

our applied error measure. Due to the dynamic nature (with

respect to e.g. temperature) of GPUs we averaged our results

over 20 repetitions without changing the data. We generated

synthetic samples S of varying sizes where each sample

contained 3-dimensional integer tuples.
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Figure 2. Execution speeds of alg. 4 and 7 on CPU and GPU. The GPU
exhibits a speedup of up to ≈ 176 compared to the execution on CPU side.

The graphs in Fig. 1 depict the execution speeds for

CPU and GPU. It becomes clear that the GPU provides a

significant boost of up to ≈ 176 compared to the CPU.

Furthermore one can observe that the preloading strategy of

alg. 7 does not yield any improvement. The overhead for

caching and synchronization outweights the potential speed

gain. We did not conduct the experiment for the CPU as it

does not feature any form of shared memory (i.e. OpenCL

shared memory requests are translated to global memory

requests).

Fig. 2 shows the previously discussed effect of

underutilization for various load factors. The optimal load

factor should be 64 as the GPU provides 64 PUs per

PPU, this becomes apparant through the shrinking average

distance between consecutive load factors. The execution

times seem to converge towards that of fload = 64. Another

interesting aspect is visualized in the equidistant “drops”

along a graph for a single load factor. A close look at the

x-axis (Fig. 3) reveals that, for e.g. fload = 1, a significant

boost of execution speed occurs every increment of 64

samples. This is explained by the fact that for fload = 1
every compute unit will handle 64 mode approximations,

thus at e.g. 64 · k all PUs in exactly k PPUs (if available)

will execute the same instruction in lockstep. This allows

for coherent memory access in form of broadcasts, i.e.

every PU in a PPU will request the same address in lockstep

with all other active PUs on the GPU. For element counts

which are not a multiple of 64, this situation does not

occur. The same holds for loadfactors below 16, above 16

the effect of latency hidding takes over and masks memory

access with a huge number of threads. One should note

that the effect of underutilization and favorable memory

access pattern are two distinct phenomena, which can be

seen in Fig. 2 where “drop-free” line segments as well as

“drops” are positioned significantly apart in a consistent way.

One critical point is the numerical stability of the GPU

implementation as is does not utilize the same numerical

precision as the CPU version. In order to measure the

error between both implementations we appplied a simple
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Figure 3. Execution speeds of alg. 4 on a GPU with a step size of 1 and
load factor fload = 1. At equidistant positions of 64 elements a significant
boost of execution speed occurs. They are the result of favorable memory
access patterns in situations of fully utilized PPUs.
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Figure 4. ECPU−GPU for alg. 4, the maximal error 0.7 clearly shows a
difference in numerical behaviour. Yet the error remains negligible for the
results even for large samples.

measure

ECPU−GPU =





|S|
∑

i=1

|yp,i,CPU − yp,i,GPU |pos



 /|S| (7)

with

|a, b|pos =

k
∑

i=1

|ai − bi| (8)

being the amount of integer dispositions along all k dimen-

sions. The results are depicted in Fig. 4, where it becomes

visible that the error, although existing, becomes negligible

as it never crosses 0.7 (even for large samples).

VI. CONCLUSION

In this paper we discussed the classic mean-shift algo-

rithm for mode approximation. On one side we restricted

ourself to gaussian kernels while on the other side we

introduced a generic distance metric through covariance

matrices. We provided an algorithmic skeleton in order to

analyze the algorithms potential for arbitrary parallelization.

This skeleton gave rise to an efficient (non-trivial) GPU

implementation which yielded a speedup of up to 176.

Preload strategies showed no benefit as the induced manage-

ment overhead simply outweighted the fast memory access.

Current computation devices (e.g. cell phones, car computers

or mainstream PCs) are designed with an increasing focus on

parallel computation. Our work provides a significant benefit

for all algorithms which utilize mean shift methods, this in-

cludes especially methods for image processing. An example

would be the HOG algorithm which can be accelerated up

to 60ms for 1600x1200px images, yet its robustness relies

(among other things) on the mean shift based approximation

of modes. For CPU based implementations or naive paral-

lelization approaches one would not be able to keep the

60ms. Which can be critical for e.g. realtime applications.

With the introduction of abstract terms as vPPUs or PUs one

can embed the algorithm into different system structures, be

it multicore CPUs or large distributed cluster systems. The

stated generic runtime complexities enable one to estimate

the gain for various system structures. Although we have

idealized certain aspects for the runtime analysis, the algo-

rithms themself were stated in a generic way, remarks have

hinted towards the corresponding complexity analysis.

Future work should include analysis of the algorithms ap-

plicability for different structures than GPUs, e.g. ARM

CPUs, Xeon Phi or distributed systems for large scale

problems as well as an evaluation of it in specific image

processing tasks (e.g. tracking problems on mobile devices).

Furthermore it remains an open question which strategies

should be followed for generic problems as e.g. non-diagonal

covariance matrices. One could for example outsource the

matrix inversions to other system components.

We provide our implementation per email request and hope

that our work, besides being practical, will inspire other

researchers.
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